REPORT DOCUMENTATIOM PAGE Form Approved

OMB No. 0704-0188

Pupiic r2R0r11ng Durden 'or This catlection of fgrmarion 15 estimated to average | nour ger respanse, CIUGIng the LIMe 10F reviewing MSITUCTIONS. s€AFCMING SX1SNg 3313 s0urc

. X X s,
gatnering and maintaining the data needed, and completing ana reviewing the (ollection of information. Send comments r arding this burden estimate or any Other aspect of this
collectian of information. including suggestions for reaucing this burgen. to Washington Headguarters Services, Directorate for infarmation Operations and Reports, 1215 jetferson
Davis Highway. Suite 1204, Aclington, VA 22202.4302. and 10 the Ottice of Management ang Buaget. Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave biank)]2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
2-25-97 Final 7-16-94 to 11-15-96
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Program Partitioning and Scheduling on Hierarchial

e DAA HO?-‘?*I—G*ozo%

Dharma P. Agrawal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Electrical and Computer Engineering REPORT NUMBER
Box 7911, North Carolina State University
Raleigh, NC 27695-7911
ATTN. Prof. Dharma P. Agrawal

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
U.S. Army Research Office AGENCY REPORT NUMBER
P. 0. Box 12211
9-2211 -
Research Triangle Park, NC 2770 BR.O 33 3/5.00 “'mA

11, SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

123. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Efficient utilization of high-performance computers require good parallelism detection and program
partitioning techniques followed by efficient scheduling of partitioned tasks. In this work, we ad-
dress issues in parallelism specification and detection, particularly related to Ob ject-Oriented(00)
programs. We have proposed solutions to overcome inheritance anomaly in Concurrent OO Lan-
guages. We have also proposed a novel type-inference mechanism for static type determination of
objects in OO programs and have developed a precise call-graph construction technique. Moreover,
we have developed efficient task scheduling algorithms which produce an optimal schedule given
sufficient number of processors. The duplication-based scheduling algorithm scales down nicely if
* number of available processors is not sufficient.

0970321 021

14. SUBJECT TERMS 15.

ABER OF PAGES

Parallelism detection, partitioning, scheduling, object- 5
oriented. 16. PRICE COOE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescrioed by ANSI Stg Z39-18
298-102

Program Partitioning and Scheduling on Hierarchical Systems

Dr. Dharma P. Agrawal
Department of Electrical & Computer Engineering
North Carolina State University
Raleigh, NC 27695-7911.
Ph: (919)-515-3984
Fax: (919)-515-5523
E-Mail: dpa@ncsu.edu.

Abstract

Efficient utilization of high-performance computers require good parallelism detection and program
partitioning techniques followed by efficient scheduling of partitioned tasks. In this work, we ad-
dress issues in parallelism specification and detection, particularly related to Object-Oriented(OO)
programs. We have proposed solutions to overcome inheritance anomaly in Concurrent OO Lan-
guages. We have also proposed a novel type-inference mechanism for static type determination of
objects in OO programs and have developed a precise call-graph construction technique. Moreover,
we have developed efficient task scheduling algorithms which produce an optimal schedule given
sufficient number of processors. The duplication-based scheduling algorithm scales down nicely if
number of available processors is not sufficient.

Foreword

A wide variety of high-performance computers with radically new architectures have been evolv-
ing rapidly over the last few years. This stupendous computing power is provided by machines
ranging from networked workstations to superscalar or VLIW machines. Particularly noticeable
among these architectures are the distributed memory machines(DMM) whose use can be seen in
a wide variety of applications including fluid flow, weather modeling, database systems etc. These
advancements in hardware have put demands on the software community to develop efficient con-
current software systems so that this enormous computing power could be utilized to the maximum
possible extent. This requires development of suitable programming paradigms, parallelism detec-
tion techniques and efficient task partitioning and scheduling strategies. The task partitioning
algorithm partitions the application into separate tasks by detecting the parallelism in the pro-
gram and represents them in the form of a Directed Acyclic Graph (DAG). After the application
is transformed to a DAG, the tasks are scheduled onto the processors.

On the other hand, on the language front, the use of Object-Oriented(OO) languages has become
widespread in every field of computing ranging from application programming to operating systems.
The OO paradigm provides the tools and facilities for developing softwares that are easier to build,
extend, reuse, modify, and maintain.

This work deals with detecting parallelism and automatically partitioning the applications, espe-
cially keeping in view OO programs; and then scheduling the partitioned tasks efficiently to reduce
overall execution time.

Statement of the Problem Studied

Performing a parallel computation on a DMM can be done in two steps. The first step deals with
specifying parallelism and detecting parallel tasks in an application. The second step consists of
scheduling these parallel tasks. We discuss some issues involved with these two steps in detail
below.

1. Parallelism Specification and Detection: Properties like inheritance and dynamic binding
of objects pose numerous hurdles in correctly specifying and detecting parallelism in OO
programs. One approach to specify parallelism is to use a concurrent OO language with con-
structs for denoting concurrency. But this leads to a major inconsistency named inheritance
anomaly forcing the programmer to redefine classes. A major goal of this work is to solve in-
heritance anomaly. Another hurdle in the path of detecting parallelism is the lack of program
point specific type information. It has been proved that static type determination for C++
is NP-hard. With insufficient type information for static analysis, many of the traditional
optimization and parallelizing techniques are rendered useless for OO languages. One prime
objective of this work is to propose a solution to this type determination problem. In order
to expose the parallelism in a program to the maximum extent, an automatic compiler must
perform control and data flow analysis beyond procedural boundaries. The backbone of such
an interprocedural analysis is a precise call-graph. But due to lack of exact type information,
construction of a precise call-graph for OO programs is not possible. This work also intends
to find out viable alternative methods for precise call-graph construction for OO programs.

2. Scheduling: Task scheduling is one of the key elements in any DMM. One of the major
limitations of DMMs is the high cost for interprocessor communication which can be reduced
by an efficient scheduling algorithm. A primary goal of this work is to reduce the overall
execution time which includes communication as well as execution time. It has been proven
that optimal scheduling of tasks onto DMMs is an NP-complete problem, and several heuristic
based approaches have been explored. This work intends to investigate the trade-off between
the schedule length and the required number of processors. A prime objective is to find
the optimium schedule for DMMs if certain conditions are satisfied and if adequate number
of processors are available. However, the system might not have the required number of
processors to produce the optimal schedule. Therefore, it is necessary to develop an algorithm
which scales down to produce the optimal algorithm for a given number of available processors.

Significant Accomplishments

1. We have mentioned in the statement of the problems the necessity of overcoming inheritance
anomaly for concurrent OO languages. We have proposed a task-parallel language based on
C++ called CORE which solves inheritance anomaly.

. We have discussed earlier that it is extremely important to know the exact type of an object
at a particular program point to apply any parallelization technique. The existing type
inference algorithms fail to address this problem adequately enough for OO programs. We
have proposed an approach named SSAInfer which transforms programs into static single
assignment (SSA) form before any type inference mechanism is applied. This SSA-based
approach combined with other constraint-based type inference methods, produces program-
point specific as well as sharper types. Another property of SSAInferis that it is language-
independent and can be used in conjunction with other existing methods.

. We have also proposed another type analysis approach named ITA. ITA performs an incremen-
tal type analysis within the constraint-based framework for restoring correct type information
for type variables after program transformations. ITA blends very well with other compiler
optimizations, such as constant propagation, in improving types.

. Besides type analysis methods, we have also explored complementary approaches to do aggres-
sive parallelization of OO programs. As mentioned earlier, failure to build a precise call-graph
hinders interprocedural analysis of OO programs. Apart from lack of type information, this is
also due to presence of virtual functions and inheritance. We have proposed and implemented
an algorithm for precise call-graph construction using class hierarchy analysis. We have run
this algorithm on a suit of benchmark programs which shows considerable improvement in
the preciseness of the call-graph.

. A code generation framework and run-time system has been developed for Sisal compiler which
maintains the static and dynamic ownerships at every processor to avoid communication
overhead on ownership information. The compiler has been targeted to Intel Touchstone
i860 systems. The speed-ups in some cases are low compared to the required number of
processors, because an inverted-tree-type parallelism is present in most Sisal programs. This
type of parallelism is the cause of overall high processor demand with relatively low speed-ups.

. We have proposed a Search and Duplication Based Algorithm(SDBS) with a complexity of
O(V?), where V is the number of tasks. The input to the algorithm is the tasks represented
in the form of a Directed Acyclic Graph (DAG) and it produces the optimal schedule given
sufficient number of processors and if certain conditions are met.

. We have also developed a Scalable and Task Duplication based Scheduling(STDS) algorithm
which is an improvement upon SDBS in terms of scalability. STDS still has an worst case
complexity of O(V'?) where V is the number of nodes in the DAG. This algorithm initially
generates clusters similar to linear clusters and uses them to generate a new schedule. It
uses the concept of duplicating critical tasks to arrive at the optimal schedule. If the number
of available processors is less than the number of linear clusters, the algorithm scales down
nicely and still produces a near optimal schedule. The algorithm has been applied to some
practical DAGs like Cholesky decomposition and its performance shows improvement over
existing scheduling techniques. The numbers obtained show that with decreasing number of
available processors, the schedule length goes up in discrete steps. This can be explained by
the fact that, as number of processors go down, for a while the critical path remains unaffected
but after a while, with more merging of lists, the critical path length goes up.

Refereed Publications

1.

10.

11.

12.

13.

S.S. Pande, and D.P. Agrawal, “Run-Time Issues in Program Partitioning on Distributed
Memory Systems,” Concurrency: Practice-and Ezperience, Special Issue on Scheduling, Vol.
7, No. 5, Aug. 1995, pp. 429-454.

. S. Darbha and D.P. Agrawal, “SDBS: A Task Duplication Based Optimal Scheduling Algo-

rithm,” In Proceedings of Scalable High Performance Computing Conference, May 1994.

. S. Darbha and D.P. Agrawal, “A Task Duplication Based Optimal Scheduling Algorithm

for Variable Execution Time Tasks,” In Proceedings of International Conference on Parallel
Processing, August 1994.

S. Darbha and D.P. Agrawal, “A Fast and Scalable Scheduling Algorithm for Distributed
Memory Systems,” Proc. 7th IEEE Symposium on Parallel and Distributed Processing, San
Antonio, TX, Oct. 25-28, 1995, pp. 60-63.

. S. Darbha and D. P. Agrawal, “Optimal Scheduling Algorithms for Distributed Memory

Machines”, Submitted to IEEE Transactions on Parallel and Distributed Systems.

. S. Darbha and D. P. Agrawal, “A Task Duplication based Scheduling Algorithm for Dis-

tributed Memory Systems”, Submitted to Journal of Parallel and Distributed Computing.

S. Darbha, “Task Scheduling Algorithms for Distributed Memory Systems”, PhD. Thesis, De-
partment of Electrical and Computer Enginnering, North Carolina State University, Raleigh,
NC, 1995.

S. Kumar and D.P. Agrawal, “A Class Based Framework for Reuse of Synchronization Code
in Concurrent Object-Oriented Languages,” International Journal of Computers and Their
Applications, Vol. 1, No. 1, Aug. 1994, pp. 11-23.

S. Kumar, “Issues in Parallelizing Object Oriented Programs,” Proc. Intn’l Conf. on Parallel
Processing Workshop on Challenges for Parallel Processing, Oconomowoc, WI, Aug. 14,1995,
pp. 64-71.

S. Kumar, D.P. Agrawal, and S.P. Iyer, “An Improved Type-Inference Algorithm to Expose
Parallelism in Object-Oriented Programs,” Proc. of the Third Workshop on Languages, Com-
pilers, and Run-Time Systems for Scalable Computers, Troy, New York, May 22-24, 1995, pp.
283-286.

S. Kumar and D.P. Agrawal, “ITA: an Incremental Type Analysis Approach for Object-
Oriented Programs,” Technical Report, Department of Electrical and Computer Enginnering,
North Carolina State University, Raleigh, NC, 1996.

S. Kumar, “Specification and Detection of Parallelism in Object-Oriented Programs,” PhD.
Thesis, Department of Electrical and Computer Enginnering, North Carolina State University,
Raleigh, NC, 1996.

D. Bairagi, S. Kumar and D.P. Agrawal, “Parallelizing OO Programs: Precise Call-Graph in
the Presence of Virtual Functions,” Workshop on Interaction between Compilers and Com-
puter Architectures, San Antonio, TX, Feb. 1997.

Awards and Honors

A Meritorious Service Award was given to Dharma P. Agrawal by the IEEE Computer Society.

List of Participating Scientific Personnel Who Earned Advanced Degrees

1. Sekhar Darbha, PhD, 1995.
2. Sandeep Kumar, PhD, 1996.

